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ABSTRACT 
This study develops an AI-based predictive model for forecasting pavement crack propagation by integrating 

traffic load, environmental conditions, and material property data. Traditional pavement management 

systems often struggle to accurately predict crack growth due to the complex interactions between these 

influencing factors. By leveraging data from various sources, including sensor-based traffic metrics, 

meteorological data, and material composition tests, this study identifies significant variables contributing 

to crack initiation and progression. The proposed model utilizes a blend of machine learning algorithms, 

including Random Forest and neural networks, with a cross-validation approach to ensure robustness. Results 

indicate that the model achieves high prediction accuracy, with an RMSE of 1.2 mm/year and an R-squared 

value close to 0.93. The findings support the use of AI-enhanced models as reliable tools for road 

infrastructure planning and maintenance, promising reductions in maintenance costs and improved pavement 

durability.  

 

1. Introduction 

Pavement cracking is a critical issue affecting the durability and safety of road infrastructure worldwide. Various 

external factors, including heavy traffic loads, environmental fluctuations, and material degradation, contribute 

to the progression of these cracks. Pavement cracks, if left untreated, can accelerate road deterioration, leading 

to costly repairs and potential safety hazards(Meng et al., 2024). In conventional approaches, crack progression 

is often estimated using empirical formulas or mechanistic models that do not fully account for the interaction 

between multiple influencing factors (Sellier & Millard, 2019). Consequently, the predictive accuracy of these 

models is limited, especially under varying traffic and environmental conditions (Vivek Vardhan & Srimurali, 

2016). 

Artificial intelligence (AI) offers a promising alternative by enabling the analysis of large datasets from diverse 

sources, thus capturing complex relationships that traditional methods may overlook (Guzmán-Torres et al., 

2024). The integration of AI in pavement analysis has shown considerable potential for enhancing predictive 

accuracy by utilizing multi-factorial data such as traffic load patterns, environmental changes, and material 

properties (Vivek Vardhan & Srimurali, 2016). Recent advancements in machine learning and deep learning 

have further expanded the capabilities of predictive modeling, particularly for infrastructure applications 

(Sounthararajan et al., 2020). 

The primary objective of this research is to design, train, and validate an AI-based model that accurately predicts 

crack propagation by analyzing traffic load, environmental conditions, and material properties. This paper aims 

to (i) identify significant variables influencing crack development, (ii) develop robust predictive algorithms, and 

(iii) assess the accuracy of the model under varied real-world conditions. The findings from this study will 

inform pavement management strategies, offering tools to anticipate maintenance needs more effectively, 

optimize resource allocation, and extend pavement lifespan. 
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2. Experimental Design 

The experimental design for this study focuses on developing an AI-based model to predict crack propagation 

in pavement by examining the effects of traffic load, environmental conditions, and material properties. The 

study’s design incorporates diverse data sources, robust monitoring tools, and processing techniques for optimal 

accuracy in predicting crack progression. Key components of the design include data sources and collection, test 

section selection, and crack monitoring tools, followed by a detailed data processing and modeling framework. 

These aspects ensure a comprehensive approach for gathering and analyzing pavement condition data under 

realistic conditions (Figure 1). 

2.1 Data Sources and Collection 

Data collection focused on three major categories: traffic load, environmental conditions, and material 

properties. Each category was monitored through specific methods to capture daily variations and long-term 

patterns over a one-year study period. 

Traffic Load Data: Traffic data was collected through sensors placed at test sections, capturing metrics like daily 

traffic volume, axle load, and load frequency. Table 1 provides sample traffic data, showing daily variations 

over a typical week. 

Table 1: Traffic Load Data Collected Over Test Sections 

Day Traffic Volume (vehicles/day) Avg Axle Load (kN) Load Frequency (cycles/day) 

Monday 10,000 80 150 

Tuesday 9,800 82 148 

Wednesday 11,500 85 160 

Thursday 10,200 78 152 

Friday 10,500 83 155 

Saturday 9,700 77 145 

Environmental Data: Environmental conditions, including temperature, humidity, precipitation, UV exposure, 

and freeze-thaw cycles, were measured daily through both on-site sensors and local meteorological data. Table 

2 summarizes key environmental data ranges and frequencies collected from the test sites. 

Table 2: Environmental Data Collected from Test Sections 

Parameter Average Value Minimum Maximum Units Frequency 

Temperature 25 -5 45 °C Daily 

Humidity 60 30 95 % Daily 

Precipitation 5 0 15 mm/day Daily 

UV Exposure 300 150 500 mW/cm² Daily 

Freeze-Thaw Cycles 10 0 20 Cycles/yr Annual 

Material Data: Pavement material properties were gathered through laboratory tests conducted at the study’s 

outset, focusing on asphalt grade, binder content, and aggregate type. These properties were verified periodically 

to assess degradation over time. 

2.2 Test Sections and Locations 

Test sections were strategically selected to encompass diverse traffic and environmental conditions, including 

urban and rural settings and high versus low temperatures. The sections also varied in pavement composition, 

with different asphalt and concrete combinations to capture the impact of material diversity on crack 

propagation. Figure 1 presents an overview flow chart of the entire data collection and monitoring setup, 

illustrating the integration of traffic, environmental, and material data collection processes, along with 

monitoring intervals. 
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Figure 1: Flow Chart of Data Collection and Monitoring Setup 

2.3 Crack Monitoring Tools 

The study employed a combination of non-destructive evaluation (NDT) tools to accurately capture crack 

progression in each test section. Ground Penetrating Radar (GPR) and LiDAR technologies, coupled with high-

resolution imaging, enabled continuous monitoring of crack initiation and propagation, while manual 

inspections were conducted periodically for data validation and accuracy assessment. This multi-tool approach 

ensured comprehensive monitoring of each crack’s progression over time, improving the reliability of the 

collected data. 

2.4 Data Processing and Preprocessing 

Data preprocessing was critical in preparing diverse datasets for model training. Initially, data cleaning and 

imputation methods were used to handle missing values and sensor inconsistencies. The data was then 

normalized to standardize traffic load, environmental, and material properties on a common scale (Guo & 

Caprani, 2019). Feature selection followed, using principal component analysis (PCA) to reduce dimensionality 

and highlight key variables influencing crack propagation(Xiong et al., 2024). Table 3 details selected features 

and their importance scores based on PCA, which guided the model in prioritizing influential variables during 

training. 

Table 3: Selected Features with PCA-Based Importance Scores 

Feature Type PCA Score Units 

Traffic Volume Quantitative 0.85 vehicles/day 

Avg Axle Load Quantitative 0.75 kN 

Temperature Quantitative 0.65 °C 

Asphalt Grade Categorical 0.80 N/A 

Binder Content Quantitative 0.70 % 

UV Exposure Quantitative 0.60 mW/cm² 

 

3. Model Development 

The model was developed using a range of machine learning algorithms, including Random Forest, Support 

Vector Machines (SVM), and neural networks. Figure 2 presents the model development workflow, detailing 

data preprocessing, training, and validation. 

3.1 Selection of Algorithms 

Random Forest and SVM were selected for their robustness with diverse data types, while Convolutional Neural 

Networks (CNN) handled image-based crack analysis, and Recurrent Neural Networks (RNN) processed 

temporal data. 
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Figure 2: Model Development and Training Flow Chart 

3.2 Training and Validation 

Data was split into training (70%), testing (20%), and validation (10%) subsets, with five-fold cross-validation 

to ensure model reliability. Feature engineering added critical insights like seasonal effects, enhancing predictive 

accuracy. 

  

4. Model Validation and Evaluation 

The model’s predictive performance was evaluated using Root Mean Square Error (RMSE), Mean Absolute 

Error (MAE), and R-squared metrics to compare predicted and observed crack propagation rates (Figure 3). 

 

Figure 3: Line Plot of Predicted vs. Observed Crack Propagation Rates 

4.1 Sensitivity Analysis 

Sensitivity analysis highlighted the impact of key variables like traffic volume and asphalt grade on crack 

progression, as shown in Table 4. 

Table 4: Sensitivity Analysis of Key Variables 

Variable Sensitivity Score Impact Level 

Traffic Volume 0.85 High 

Asphalt Grade 0.75 High 

Temperature 0.65 Medium 

Humidity 0.55 Moderate 

4.2 Accuracy under Conditions 

Illustration of the model’s accuracy under both controlled baseline and real-world conditions, is given in Figure 

4. This 3D bar chart highlights the strong performance of models under Controlled Baseline conditions, 

achieving lower RMSE (1.2) and MAE (0.8) with high Accuracy (92.5%), Precision (91%), Recall (90%), and 

Specificity (93%). Although the Real-World Scenario metrics are slightly lower—RMSE at 1.8, MAE at 1.5, 

and Accuracy at 88%—the model maintains robust performance across conditions, with Precision at 86.5% and 

Recall at 85%, demonstrating adaptability. These results suggest the model’s foundation is solid, while fine-

tuning for real-world variability could further enhance its real-world applicability and resilience. 
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Figure 4: Bar Chart of Prediction Accuracy under Controlled and Real-World Conditions 

 

5. Analysis and Interpretation 

The model’s accuracy was compared with traditional crack propagation models, revealing that the AI-based 

approach provided superior predictive capabilities, particularly in complex, variable conditions. Statistical 

analyses, including ANOVA and regression, identified traffic volume and asphalt grade as primary factors 

influencing crack progression. The model's sensitivity analysis, as shown in Table 5, demonstrated that traffic 

volume had the highest impact, which is consistent with prior studies on pavement degradation due to heavy and 

frequent loads (Tao & Qian, 2024). Asphalt grade also significantly influenced crack growth, likely due to its 

role in determining pavement flexibility and resistance to stress. 

Table 5: Comparison of AI Model with Traditional Crack Propagation Models 

Model RMSE (mm/year) MAE (mm/year) Accuracy (%) 

AI Model 1.2 0.8 92.5 

Mechanistic-Empirical Model 2.0 1.4 84.0 

Paris Law 2.3 1.6 82.3 

Empirical Regression Model 2.5 1.9 80.1 

Field Observation Model 2.2 1.7 81.7 

Figure 5 further illustrates crack propagation rates under varying environmental conditions, highlighting how 

factors like temperature fluctuations and humidity affect crack growth. The model's adaptability to these changes 

indicates its potential to offer insights that are dynamically responsive to weather conditions. Specifically, higher 

temperatures were associated with accelerated crack progression, likely due to thermal expansion and softening 

of asphalt, while freeze-thaw cycles appeared to exacerbate cracking in colder sections(Gong et al., 2024) . This 

data-driven adaptability underscores the model’s potential in real-world applications, where environmental 

variability often complicates maintenance planning. 

 

Figure 5: Line Plot of Crack Propagation Over Time Under Varying Environmental Conditions 
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6. Conclusion 

This study developed and validated an AI-based model for predicting pavement crack propagation by integrating 

multi-source data on traffic loads, environmental conditions, and material properties. With an accuracy rate of 

92.5% and RMSE of 1.2 mm/year, the model outperformed traditional methods, demonstrating strong predictive 

capability under varied conditions. Sensitivity analysis highlighted traffic volume and asphalt grade as primary 

contributors to crack growth, underscoring the role of both loading frequency and material resilience in 

pavement durability. The model’s adaptability to environmental fluctuations—such as temperature shifts and 

freeze-thaw cycles—suggests significant potential for proactive infrastructure management, enabling more 

accurate, cost-effective maintenance planning. By integrating real-world data and leveraging machine learning, 

this approach addresses the complexities of crack propagation more effectively than conventional methods. 

Future work could explore additional factors, such as real-time monitoring inputs, to further enhance the model’s 

utility, supporting agencies in optimizing maintenance strategies and extending the lifespan of critical road 

infrastructure. 
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